值类型与引用类型

由于Solidity是一个静态类型的语言,所以编译时需明确指定变量的类型(包括本地变量状态变量),Solidity编程语言提供了一些基本类型(elementary types)可以用来组合成复杂类型。

类型可以与不同运算符组合,支持表达式运算,可以通过表达式的执行顺序来了解执行顺序。

值类型(Value Type)

值类型包含

  • 布尔(Booleans)
  • 整型(Integer)
  • 地址(Address)
  • 定长字节数组(fixed byte arrays)
  • 有理数和整型(Rational and Integer LiteralsString literals)
  • 枚举类型(Enums)
  • 函数(Function Types)

为什么会叫值类型,是因为上述这些类型在传值时,总是值传递1。比如在函数传参数时,或进行变量赋值时。

引用类型(Reference Types)

复杂类型,占用空间较大的。在拷贝时占用空间较大。所以考虑通过引用传递。常见的引用类型有:

  • 不定长字节数组(bytes)
  • 字符串(string)
  • 数组(Array)
  • 结构体(Struts)

布尔(Booleans)

bool: 可能的取值为常量值truefalse.

支持的运算符:

  • !逻辑非
  • && 逻辑与
  • || 逻辑或
  • == 等于
  • != 不等于

备注:运算符&&||是短路运算符,如f(x)||g(y),当f(x)为真时,则不会继续执行g(y)

整型(Integer)

int/uint:变长的有符号或无符号整型。变量支持的步长以8递增,支持从uint8uint256,以及int8int256。需要注意的是,uintint默认代表的是uint256int256256是标识最大数字为2的256次方。

支持的运算符:

  • 比较:<=<==!=>=>,返回值为bool类型。
  • 位运算符:&|,(^异或),(~非)。
  • 数学运算:+-,一元运算+*/,(%求余),(**平方)。

整数除法总是截断的,但如果运算符是字面量,则不会截断(后面会进一步提到)。另外除0会抛异常 ,我们来看看下面的这个例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
pragma solidity ^0.4.0;
// simple store example
contract simpleStorage{
uint valueStore; //
function add(uint x, uint y) returns (uint z){
z = x + y;
}
function divide() returns (uint z){
uint x = 1;
uint y = 2;
z = x / y;
}
}
整数字面量

整数字面量,由包含0-9的数字序列组成,默认被解释成十进制。在Solidity中不支持八进制,前导0会被默认忽略,如0100,会被认为是100

小数由.组成,在他的左边或右边至少要包含一个数字。如1..11.3均是有效的小数。

字面量本身支持任意精度,也就是可以不会运算溢出,或除法截断。但当它被转换成对应的非字面量类型,如整数或小数。或者将他们与非字面量进行运算,则不能保证精度了。

1
2
3
4
5
6
7
8
9
10
11
12
pragma solidity ^0.4.0;
contract IntegerLiteral{
function integerTest() returns (uint, uint){
//超出运算字长了
var i = (2**800 + 1) - 2**800;
var j = 1/3*3;
//小数运算
var k = 0.5*8;
return (i, j);
}
}

总之来说就是,字面量怎么都计算都行,但一旦转为对应的变量后,再计算就不保证精度啦。

地址(Address)

地址

地址: 以太坊地址的长度,大小20个字节,160位,所以可以用一个uint160编码。地址是所有合约的基础,所有的合约都会继承地址对象,也可以随时将一个地址串,得到对应的代码进行调用。当然地址代表一个普通帐户时,就没有这么多丰富的功能啦。

支持的运算符
  • <=<==!=>=>
地址类型的成员

属性:balance
函数:send()call()delegatecall()callcode()

地址字面量

十六进制的字符串,凡是能通过地址合法性检查(address checksum test)2,就会被认为是地址,如0xdCad3a6d3569DF655070DEd06cb7A1b2Ccd1D3AF。需要注意的是39到41位长的没有通过地址合法性检查的,会提示一个警告,但会被视为普通的有理数字面量。

balance

通过它能得到一个地址的余额。

1
2
3
4
5
6
7
8
9
pragma solidity ^0.4.0;
contract addressTest{
function getBalance(address addr) returns (uint){
return addr.balance;
}
}
this

如果只是想得到当前合约的余额,其实可以这样写:

1
2
3
4
5
6
7
8
9
pragma solidity ^0.4.0;
contract addressTest{
function getBalance() returns (uint){
return this.balance;
}
}

原因是对于合约来说,地址代表的就是合约本身,合约对象默认继承自地址对象,所以内部有地址的属性。

地址的方法send()

用来向某个地址发送货币(货币单位是wei)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
pragma solidity ^0.4.0;
//请注意这个仅是Demo,请不要用到正式环境
contract PayTest {
//得到当前合约的余额
function getBalance() returns (uint) {
return this.balance;//0
}
//向当前合约存款
function deposit() payable returns(address addr, uint amount, bool success){
//msg.sender 全局变量,调用合约的发起方
//msg.value 全局变量,调用合约的发起方转发的货币量,以wei为单位。
//send() 执行的结果
return (msg.sender, msg.value, this.send(msg.value));
}
}

这个合约实现的是充值。this.send(msg.value)意指向合约自身发送msg.value量的以太币。msg.value是合约调用方附带的以太币。

send()方法执行时有一些风险

  1. 调用递归深度不能超1024。
  2. 如果gas不够,执行会失败。
  3. 所以使用这个方法要检查成功与否。或为保险起见,货币操作时要使用一些最佳实践。

如果执行失败,将会回撤所有交易,所以务必留意返回结果。

call()callcode()delegatecall()

为了同一些不支持ABI协议的进行直接交互(一般的web3.jssoldity都是支持的)。可以使用call()函数,用来向另一个合约发送原始数据。参数支持任何类型任意数量。每个参数会按规则(规则是按ABI4)打包成32字节并一一拼接到一起。

call()方法支持ABI协议[ABI]定义的函数选择器。如果第一个参数恰好4个字节,在这种情况下,会被认为根据ABI协议定义的函数器指定的函数签名[ABI]。所以如果你只是想发送消息体,需要避免第一个参数是4个字节。

call方法返回一个bool值,以表明执行成功还是失败。正常结束返回true,异常终止返回false。我们无法解析返回结果,因为这样我们得事前知道返回的数据的编码和数据大小(这里的潜在假设是不知道对方使用的协议格式,所以也不会知道返回的结果如何解析,有点祼协议测试的感觉)。

同样我们也可以使用delegatecall()它与call方法的区别在于,仅仅是代码会执行,而其它方面,如(存储,余额等)都是用的当前的合约的数据。delegatecall()方法的目的是用来执行另一个合约中的工具库。所以开发者需要保证两个合约中的存储变量能兼容,来保证delegatecall()能顺利执行。

在homestead阶段之前,仅有一个受限的多样的callcode()方法可用,但并未提供对msg.sendermsg.value的访问权限。

上面的这三个方法call()delegatecall()callcode()都是底层的消息传递调用,最好仅在万不得已才进行使用,因为他们破坏了Solidity的类型安全。

关于call()函数究竟发的什么消息体,函数选择器究竟怎么用,参见这个文章的挖掘。

上述的函数都是底层的函数,使用时要异常小心。当调用一个未知的,可能是恶意的合约时,当你把控制权交给它,它可能回调回你的合约,所以要准备好在调用返回时,应对你的状态变量可能被恶意篡改的情况。


  1. 如果你想了解更多关于地址的由来,UTXO等,可以参考: http://me.tryblockchain.org/Solidity%E7%9A%84%E5%9C%B0%E5%9D%80%E7%B1%BB%E5%9E%8B.html
  2. 为防止录入地址有误,一种格式化地址后来确认地址有效性的方案,https://github.com/ethereum/EIPs/issues/55
  3. 原因详见实现以太币支付的文章,http://me.tryblockchain.org/%E6%94%AF%E4%BB%98%E7%9B%B8%E5%85%B3.html
  4. 关于ABI协议的详细说明:http://me.tryblockchain.org/Solidity-abi-abstraction.html

字节数组(byte arrays)

定长字节数组(Fixed-size byte arrays)

bytes1, … ,bytes32,允许值以步长1递增。byte默认表示byte1

运算符

比较:<=<==!=>=>,返回值为bool类型。

位运算符:&|^(异或),~

支持序号的访问,与大多数语言一样,取值范围[0, n),其中n表示长度。

成员变量

.length表示这个字节数组的长度(只读)。

动态大小的字节数组

bytes: 动态长度的字节数组,参见数组(Arrays)。非值类型1

string: 动态长度的UTF-8编码的字符类型,参见数组(Arrays)。非值类型[valueType]。

一个好的使用原则是:

  • bytes用来存储任意长度的字节数据,string用来存储任意长度的UTF-8编码的字符串数据。
  • 如果长度可以确定,尽量使用定长的如byte1byte32中的一个,因为这样更省空间。

枚举

枚举类型是在Solidity中的一种用户自定义类型。他可以显示的转换与整数进行转换,但不能进行隐式转换。显示的转换会在运行时检查数值范围,如果不匹配,将会引起异常。枚举类型应至少有一名成员。我们来看看下面的例子吧。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
pragma solidity ^0.4.0;
contract test {
enum ActionChoices { GoLeft, GoRight, GoStraight, SitStill }
ActionChoices choice;
ActionChoices constant defaultChoice = ActionChoices.GoStraight;
function setGoStraight() {
choice = ActionChoices.GoStraight;
}
// Since enum types are not part of the ABI, the signature of "getChoice"
// will automatically be changed to "getChoice() returns (uint8)"
// for all matters external to Solidity. The integer type used is just
// large enough to hold all enum values, i.e. if you have more values,
// `uint16` will be used and so on
// 默认返回数字
function getChoice() returns (ActionChoices) {
return choice;
}
function getDefaultChoice() returns (uint) {
return uint(defaultChoice);
}
}

函数(Function Types)

函数类型1即是函数这种特殊的类型。

  • 可以将一个函数赋值给一个变量,一个函数类型的变量。
  • 还可以将一个函数作为参数进行传递。
  • 也可以在函数调用中返回一个函数。

函数类型有两类;可分为internalexternal函数。

内部函数(internal)

因为不能在当前合约的上下文环境以外的地方执行,内部函数只能在当前合约内被使用。如在当前的代码块内,包括内部库函数,和继承的函数中。

外部函数(External)

外部函数由地址和函数方法签名两部分组成。可作为外部函数调用的参数,或者由外部函数调用返回。

函数的定义

完整的函数的定义如下:

1
function (<parameter types>) {internal(默认)|external} [constant] [payable] [returns (<return types>)]

若不写类型,默认的函数类型是internal的。如果函数没有返回结果,则必须省略returns关键字。下面我们通过一个例子来了解一下。

1
2
3
4
5
6
7
8
9
10
11
12
pragma solidity ^0.4.0;
contract Test{
//默认是internal类型的
function noParameter() returns (uint){}
//无返回结果
function noReturn1(uint x) {}
//如果无返回结果,必须省略`returns`关键字
//function noReturn2(uint x) returns {}
}

如果一个函数变量没有初始化,直接调用它将会产生异常。如果delete了一个函数后调用,也会发生同样的异常。

如果外部函数类型在Solidity的上下文环境以外的地方使用,他们会被视为function类型。编码为20字节的函数所在地址,紧跟4字节的函数方法签名2的共占24字节的bytes24类型。

合约中的public的函数,可以使用internalexternal两种方式来调用。下面来看看,两种方式的不同之处。

函数的internalexternal

调用一个函数f()时,我们可以直接调用f(),或者使用this.f()。但两者有一个区别。前者是通过internal的方式在调用,而后者是通过external的方式在调用。请注意,这里关于this的使用与大多数语言相背。下面通过一个例子来了解他们的不同:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
pragma solidity ^0.4.5;
contract FuntionTest{
function internalFunc() internal{}
function externalFunc() external{}
function callFunc(){
//直接使用内部的方式调用
internalFunc();
//不能在内部调用一个外部函数,会报编译错误。
//Error: Undeclared identifier.
//externalFunc();
//不能通过`external`的方式调用一个`internal`
//Member "internalFunc" not found or not visible after argument-dependent lookup in contract FuntionTest
//this.internalFunc();
//使用`this`以`external`的方式调用一个外部函数
this.externalFunc();
}
}
contract FunctionTest1{
function externalCall(FuntionTest ft){
//调用另一个合约的外部函数
ft.externalFunc();
//不能调用另一个合约的内部函数
//Error: Member "internalFunc" not found or not visible after argument-dependent lookup in contract FuntionTest
//ft.internalFunc();
}
}

数组

数组可以声明时指定长度,或者是变长的。对storage1的数组来说,元素类型可以是任意的,类型可以是数组,映射类型,数据结构等。但对于memory[datalocation]的数组来说。如果函数是对外可见的2,那么函数参数不能是映射类型的数组,只能是支持ABI的类型3

一个类型为T,长度为k的数组,可以声明为T[k],而一个变长的数组则声明为T[]
你还可以声明一个多维数据,如一个类型为uint的数组长度为5的变长数组,可以声明为uint[][5] x。需要留心的是,相比非区块链语言,多维数组的长度声明是反的。

要访问第三个动态数据的,第二个元素,使用x[2][1]。数组的序号是从0开始的,序号顺序与定义相反。

bytesstring是一种特殊的数组。bytes类似byte[],但在外部函数作为参数调用中,会进行压缩打包,更省空间,所以应该尽量使用bytes4string类似bytes,但不提供长度和按序号的访问方式。

由于bytesstring,可以自由转换,你可以将字符串s通过bytes(s)转为一个bytes。但需要注意的是通过这种方式访问到的是UTF-8编码的码流,并不是独立的一个个字符。比如中文编码是多字节,变长的,所以你访问到的很有可能只是其中的一个代码点。

类型为数组的状态变量,可以标记为public类型,从而让Solidity创建一个访问器,如果要访问数组的某个元素,指定数字下标就好了。

创建一个数组

可使用new关键字创建一个memory的数组。与stroage数组不同的是,你不能通过.length的长度来修改数组大小属性。我们来看看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
pragma solidity ^0.4.0;
contract C {
function f() {
//创建一个memory的数组
uint[] memory a = new uint[](7);
//不能修改长度
//Error: Expression has to be an lvalue.
//a.length = 100;
}
//storage
uint[] b;
function g(){
b = new uint[](7);
//可以修改storage的数组
b.length = 10;
b[9] = 100;
}
}

在上面的代码中,f()方法尝试调整数组a的长度,编译器报错Error: Expression has to be an lvalue.。但在g()方法中我们看到可以修改5

字面量及内联数组

数组字面量,是指以表达式方式隐式声明一个数组,并作为一个数组变量使用的方式。下面是一个简单的例子:

1
2
3
4
5
6
7
8
9
10
pragma solidity ^0.4.0;
contract C {
function f() {
g([uint(1), 2, 3]);
}
function g(uint[3] _data) {
// ...
}
}

通过数组字面量,创建的数组是memory的,同时还是定长的。元素类型则是使用刚好能存储的元素的能用类型,比如代码里的[1, 2, 3],只需要uint8即可存储。由于g()方法的参数需要的是uint(默认的uint表示的其实是uint256),所以要使用uint(1)来进行类型转换。

还需注意的一点是,定长数组,不能与变长数组相互赋值,我们来看下面的代码:

1
2
3
4
5
6
7
8
pragma solidity ^0.4.0;
contract C {
function f() {
// The next line creates a type error because uint[3] memory
// cannot be converted to uint[] memory.
uint[] x = [uint(1), 3, 4];
}

限制的主要原因是,ABI不能很好的支持数组,已经计划在未来移除这样的限制。(当前的ABI接口,不是已经能支持数组了?)

数组的属性和方法

length属性

数组有一个.length属性,表示当前的数组长度。storage的变长数组,可以通过给.length赋值调整数组长度。memory的变长数组不支持。

不能通过访问超出当前数组的长度的方式,来自动实现上面说的这种情况。memory数组虽然可以通过参数,灵活指定大小,但一旦创建,大小不可调整,对于变长数组,可以通过参数在编译期指定数组大小。

push方法

storage的变长数组和bytes都有一个push(),用于附加新元素到数据末端,返回值为新的长度。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
pragma solidity ^0.4.0;
contract C {
uint[] u;
bytes b;
function testArryPush() returns (uint){
uint[3] memory a = [uint(1), 2, 3];
u = a;
return u.push(4);
}
function testBytesPush() returns (uint){
b = new bytes(3);
return b.push(4);
}
}

结构体(struct)

Solidity提供struct来定义自定义类型。我们来看看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
pragma solidity ^0.4.0;
contract CrowdFunding{
struct Funder{
address addr;
uint amount;
}
struct Campaign{
address beneficiary;
uint goal;
uint amount;
uint funderNum;
mapping(uint => Funder) funders;
}
uint compaingnID;
mapping (uint => Campaign) campaigns;
function candidate(address beneficiary, uint goal) returns (uint compaingnID){
// initialize
campaigns[compaingnID++] = Campaign(beneficiary, goal, 0, 0);
}
function vote(uint compaingnID) payable {
Campaign c = campaigns[compaingnID];
//another way to initialize
c.funders[c.funderNum++] = Funder({addr: msg.sender, amount: msg.value});
c.amount += msg.value;
}
function check(uint comapingnId) returns (bool){
Campaign c = campaigns[comapingnId];
if(c.amount < c.goal){
return false;
}
uint amount = c.amount;
// incase send much more
c.amount = 0;
if(!c.beneficiary.send(amount)){
throw;
}
return true;
}
}

上面的代码向我们展示的一个简化版的众筹项目,其实包含了一些struct的使用。struct可以用于映射和数组中作为元素。其本身也可以包含映射和数组等类型。

我们不能声明一个struct同时将这个struct作为这个struct的一个成员。这个限制是基于结构体的大小必须是有限的。

虽然数据结构能作为一个mapping的值,但数据类型不能包含它自身类型的成员,因为数据结构的大小必须是有限的。

需要注意的是在函数中,将一个struct赋值给一个局部变量(默认是storage类型),实际是拷贝的引用,所以修改局部变量值时,会影响到原变量。

当然,你也可以直接通过访问成员修改值,而不用一定赋值给一个局部变量,如campaigns[comapingnId].amount = 0

映射/字典(mappings)

映射或字典类型,一种键值对的映射关系存储结构。定义方式为mapping(_KeyType => _KeyValue)。键的类型允许除映射外的所有类型,如数组,合约,枚举,结构体。值的类型无限制。

映射可以被视作为一个哈希表,其中所有可能的键已被虚拟化的创建,被映射到一个默认值(二进制表示的零)。但在映射表中,我们并不存储键的数据,仅仅存储它的keccak256哈希值,用来查找值时使用。

因此,映射并没有长度,键集合(或列表),值集合(或列表)这样的概念。

映射类型,仅能用来定义状态变量,或者是在内部函数中作为storage类型的引用。引用是指你可以声明一个,如var storage mappVal的用于存储状态变量的引用的对象,但你没办法使用非状态变量来初始化这个引用。

可以通过将映射标记为public,来让Solidity创建一个访问器。要想访问这样的映射,需要提供一个键值做为参数。如果映射的值类型也是映射,使用访问器访问时,要提供这个映射值所对应的键,不断重复这个过程。下面来看一个例子:

1
2
3
4
5
6
7
8
contract MappingExample{
mapping(address => uint) public balances;
function update(uint amount) returns (address addr){
balances[msg.sender] = amount;
return msg.sender;
}
}

由于调试时,你不一定方便知道自己的发起地址,所以把这个函数,略微调整了一下,以在调用时,返回调用者的地址。编译上述合同后,可以先调用update(),执行成功后,查看调用信息,能看到你更新的地址,这样再查一下这个地址的在映射里存的值。